
Tor Metrics Data Collection, Aggregation, and
Presentation

Iain R. Learmonth
The Tor Project

irl@torproject.org

Karsten Loesing
The Tor Project

karsten@torproject.org

Tor Tech Report 2019-03-001
March 25, 2019

Abstract

Tor Metrics is the central mechanism that The Tor Project uses to evaluate the function-
ality and ongoing relevance of its technologies as Internet freedom software. Tor Metrics
consists of several services that work together to collect, aggregate, and present data from
the Tor network and related services. The first section of this report gives a high level
overview of the software behind these services. Sections 2 to 8 of this report give an
overview of the codebases that make up the software. Section 9 then briefly compares
our approach to collect, aggregate, and present data with OONI’s data pipeline. Finally,
this report makes recommendations for next steps to be taken for improving the existing
code that makes up Tor Metrics which has now been evolving for more than ten years.
Intended audiences of this report include current and prospective contributors to Tor Metrics
codebases as well as other Internet freedom projects that face the same challenges while
collecting metrics on their products.

1 Overview of the software behind Tor Metrics

As of August 2017, all user-facing Tor Metrics content has moved (back) to the Tor Metrics
website. The main reason for gathering everything related to Tor Metrics on a single website is
usability. In the background, however, there are several services distributed over a dozen hosts
that together collect, aggregate, and present the data on the Tor Metrics website.

Almost all Tor Metrics codebases are written using Java, although there is also R, SQL and
Python. In the future we expect to see more Python code, although Java is still popular with

This work was supported by Open Technology Fund under contract number 1002-2017-018. Support does not
imply endorsement. With thanks to the OONI team for their assistance in completing a comparison between our
two data pipelines, and thanks to Ana Custura for her contributions to the OnionPerf section of this report.

1

mailto:irl@torproject.org
mailto:karsten@torproject.org


Tor Project Services

Public Tor Network

Tor Metrics

Web Servers

CollecTor

Relays

Directory Authorities

Bridges

Bridge AuthorityOnionPerf

metrics-lib metrics-lib metrics-lib

Onionoo

Relay Search metrics-bot

Tor Metrics Graphs Exonerator

Figure 1: The Tor Metrics Data Collection, Analysis and Visualisation Pipeline

academics and we would like to continue supporting easy access to our data for those that want
to use Java even if we are using it less ourselves.

Tor relays and bridges collect aggregated statistics about their usage including bandwidth and
connecting clients per country. Source aggregation is used to protect the privacy of connecting
users—discarding IP addresses and only reporting country information from a local database
mapping IP address ranges to countries. These statistics are sent periodically to the directory
authorities.

CollecTor downloads the latest server descriptors, extra info descriptors containing the
aggregated statistics, and consensus documents from the directory authorities and archives
them. This archive is public and the metrics-lib Java library can be used to parse the contents
of the archive to perform analysis of the data.

In order to provide easy access to visualizations of the historical data archived, the Tor
Metrics website contains a number of customizable plots to show user, traffic, relay, bridge, and
application download statistics over a requested time period and filtered to a particular country.

In order to provide easy access to current information about the public Tor network, Onionoo
implements a protocol to serve JSON documents over HTTP that can be consumed by applications
that would like to display information about relays along with historical bandwidth, uptime,
and consensus weight information.

An example of one such application is Relay Search which is used by relay operators, those
monitoring the health of the network, and developers of software using the Tor network.
Another example of such an application is metrics-bot which posts regular snapshots to Twitter
and Mastodon including country statistics and a world map plotting known relays.

Figure 1 shows how data is collected, archived, analyzed, and presented to users through
services operated by Tor Metrics. The majority of our services use metrics-lib to parse the
descriptors that have been collected by CollecTor as their source of raw data about the public
Tor network.

2



Figure 2: Screenshot of the homepage of the Tor Metrics website.

2 Tor Metrics Website

This is the primary point of contact for users that would like to learn more about the public Tor
network. Figure 2 shows a screenshot of the homepage. The diagram in Figure 3 shows how
information is arranged on the Tor Metrics website.

The Tor Metrics website itself is written in Java servlets and JavaServer Pages (JSP). The
website is deployed as WAR file and contains an embedded Jetty server. The relevant code
can be found in the metrics-web repository in the Java package org.torproject.metrics.web.
Approximate lines of code count per programming language in the metrics-web source control
repository for common parts can be found in table 1.

The “Analysis” section of the Tor Metrics website contains visualisations of recent and
historical data about the Tor Network. These graphs are produced by R using the various
tidyverse1 packages like ggplot2, tidyr, dplyr, and somewhat more recently readr.

We have an Rserve2 process running on the machine running the Tor Metrics website which
accepts local connections with R function calls and as a result writes graphs and CSV files to
disk. This Rserve process is started by cron on reboot, reads a file with all graphing code, and
then listens for requests from the Java application. See src/main/R/rserver/rserve-init.R
in the metrics-web repository for the relevant graphing code.

In Java, we have a fair amount of wrapping code for our Rserve process. GraphImageServlet
accepts requests, GraphParameterChecker parses the parameters, and RObjectGenerator then

1https://www.tidyverse.org/
2https://www.rforge.net/Rserve/

3

https://www.tidyverse.org/
https://www.rforge.net/Rserve/


Tor Metrics Portal

Analysis

Services

Sources

Development

Research

About

Users

Servers

Traffic

Performance

Onion Services

Applications

Relay Search

ExoneraTor

CollecTor

Statistics

Onionoo

Reproducible Metrics

metrics-lib

Figure 3: Information Architecture for the Tor Metrics Portal. External information is not shown.

4



Language files code

XSLT 1 9064
JSP 28 7036
JSON 3 4497
Java 39 2444
JavaScript 14 1513
R 3 1510
XML 6 1464
HTML 5 820
CSS 6 736
DTD 1 170
awk 1 33
Bourne Shell 4 9

Table 1: Approximate lines of code count per programming language in the metrics-web source
control repository for common parts.

communicates with the Rserve process.
The data to be graphed is written to a shared directory which the Rserve process uses to

make its graphs. That shared directory is updated at the end of the daily data-processing
modules run. The Rserve process reads the CSV files contained in that shared directory for each
new graph it plots, which works relatively fast with the readr package.

We implemented a simple caching mechanism in RObjectGenerator. If the graph or CSV file
that we’re asked to return already exists and is not too old then that will be returned rather
than asking Rserve to produce a new file. Unfortunately, we never implemented a cache cleaner,
which is why the directory of generated files grows forever. Fortunately, generated files are
pretty small, so this has never caused issues so far.

The modules that produce the data for these visualisations are described in subsections
2.1—2.8. The approximate lines of code count per programming language in the metrics-web
source control repository for each module is shown in table 3. Each of these modules has its
own working storage and some also have databases. The current size of these is listed in table 2
and illustrated in figure 4.

The “Services” section of the Tor Metrics website embeds external code to provide query
interfaces to Tor Metrics data. This includes Relay Search, described in section 6, and ExoneraTor,
described in section 5.

In the “Sources” section there is an interface to browse the raw data available in the
“CollecTor” service which is described in section 3. The remaining pages and sections are static
content, included either directly or using light wrapping for theming purposes with JSPs.

5



Component Storage Used

common filesystem 653 MB
connbidirect filesystem 11 MB
onionperf filesystem 3.7 MB
onionperf database 1332 MB
servers filesystem 30 MB
servers database 4299 MB
advbwdist filesystem 370 MB
hidserv filesystem 4.7 GB
clients filesystem 399 MB
clients database 101 GB
ipv6servers filesystem 1.9 MB
ipv6servers database 10 GB
webstats filesystem 14 MB
webstats database 6381 MB

Table 2: The storage space consumed by the component modules of metrics-web. This is
illustrated in figure 4.

Figure 4: Bar chart showing the storage space consumed by the component modules of metrics-
web. The raw values for this chart can be found in table 2.

6



2.1 metrics-web connbidirect module

This module aggregates data from extra-info descriptors, which are collected by the relaydescs
module of CollecTor, to find the fraction of direct connections between a relay and other nodes
in the network that are used uni- or bi-directionally.

Every 10 seconds, relays determine for every direct connection whether they read and wrote
less than a threshold of 20 KiB. Connections below this threshold are excluded from the graph.
For the remaining connections, relays determine whether they read/wrote at least 10 times as
many bytes as they wrote/read. If so, they classify a connection as "Mostly reading" or "Mostly
writing", respectively.

All other connections are classified as "Both reading and writing". After classifying connec-
tions, read and write counters are reset for the next 10-second interval. The aggregate data
contains daily medians and inter-quartile ranges of reported fractions.

2.2 metrics-web onionperf module

This module aggregates data from OnionPerf instances, which are collected by the onionperf
module of CollecTor, to find overall performance when downloading static files of different
sizes over Tor, either from a server on the public Internet or from a version 2 onion server.

The data shows the range of measurements from first to third quartile, and highlights the
median. The slowest and fastest quarter of measurements are omitted from the data.

Circuit build times and end-to-end latency are also calculated from the same OnionPerf
measurements.

2.3 metrics-web legacy/servers module

This module is the oldest data-processing module in metrics-web. It imports various contents
from relay and bridge descriptors into a database called tordir. Once the import is done, the
module runs an SQL function to produce daily aggregates on the number of relays and bridges
as well as advertised and consumed bandwidth.

The initial purpose of this database was to contain all relevant Tor network data for all kinds
of Tor Metrics services, including an earlier version of Relay Search. However, this approach of
using one database for everything did not scale. When the database grew too big, that Relay
Search service has been stopped, and the import tables have been changed to only contain the
last two weeks of data.

2.4 metrics-web advbwdist module

This module reads contents from network status consensuses and relay server descriptors to
provide the data for two graphs: Advertised bandwidth distribution and Advertised bandwidth
of n-th fastest relays, which display advertised bandwidth percentiles and ranks, respectively.

This module was created out of a one-off analysis of advertised bandwidth distribution. The
main difficulty in providing this data is that advertised bandwidths can only be found in server
descriptors, but consensuses are required to obtain the set of relays running at a given time.
This module aims to provide this data without keeping a huge database by processing all server

7



descriptors published in the last 72 hours together with all newly published consensuses. This
approach is different from all other modules which do not dictate an order in which descriptors
are imported nor that recent server descriptors need to be re-imported over and over until they
are older than 72 hours.

2.5 metrics-web hidserv module

This module aggregates data from extra-info descriptors, which are collected by the relaydescs
module of CollecTor, to find the number of unique .onion addresses for version 2 onion services
in the network per day. These numbers are extrapolated from aggregated statistics on unique
version 2 .onion addresses reported by single relays acting as onion-service directories, if at
least 1% of relays reported these statistics [2].

This module also uses the same extra-info descriptors to find the amount of onion-service
traffic from version 2 and version 3 onion services in the network per day. This number is
extrapolated from aggregated statistics on onion-service traffic reported by single relays acting
as rendezvous points for version 2 and 3 onion services, if at least 1% of relays reported these
statistics.

2.6 metrics-web clients module

This module aggregates data from extra-info descriptors, which are collected by the relaydescs
module of CollecTor, to find the estimated number of directly-connecting clients; that is, it
excludes clients connecting via bridges. These estimates are derived from the number of
directory requests counted on directory authorities and mirrors.

Relays resolve client IP addresses to country codes, so that graphs are available for most
countries. Furthermore, it is possible to display indications of censorship events as obtained
from an anomaly-based censorship-detection system [1].

This module also aggregates data from extra-info descriptors from bridges, which are
collected by the bridgedescs module of CollecTor, to find the estimated number of clients
connecting via bridges. These numbers are derived from directory requests counted on bridges.
Bridges resolve client IP addresses of incoming directory requests to country codes, so that
graphs are also available for most countries.

2.7 metrics-web ipv6servers module

This module imports relevant parts from server descriptors and network statuses into a database
and exports aggregate statistics on IPv6 support to a CSV file. Descriptors include relay and
bridge descriptors.

The ipv6servers database contains import tables as well as tables with pre-aggregated
data. The former contain all newly imported descriptor details, whereas the latter contain
aggregates like the number of relays or bridges and total advertised bandwidth by every possible
combination of relevant relay or bridge attributes. This approach reduces database size by a lot,
but it also makes it difficult to add new relay or bridge attributes later on. In such a case, past
data would have to be re-imported into the database.

8



relaydescs
module

bridgedescs
module

exitlists
module

onionperf
module

webstats 
module

CollecTor “Recent” 
Documents

Generate Tarballs CollecTor “Archive” 
Tarballs

Generate Index

CollecTor 
Index

writes fetches from writes

fetches metadata
from

fetches metadata
from

writes

Figure 5: Data flow in the CollecTor application.

2.8 metrics-web webstats module

This module aggregates web server logs, collected by the webstats module of Collector. All data
comes from logs which are provided in a stripped-down version of Apache’s "combined" log
format without IP addresses, log times, HTTP parameters, referers, and user agent strings.

This module finds absolute numbers of requests to Tor’s web servers related to Tor Browser.
Initial downloads and signature downloads are requests made by the user to download a Tor
Browser executable or a corresponding signature file from the Tor website. Update pings and
update requests are requests made by Tor Browser to check whether a newer version is available
or to download a newer version. Data is also aggregated by platform and locale.

3 CollecTor

CollecTor fetches data from various nodes and services in the public Tor network and makes it
available to the world. Descriptors are available in two different file formats: recent descriptors
that were published in the last 72 hours are available as plain text, and archived descriptors
covering over 10 years of Tor network history are available as compressed tarballs. Index files
are also created that contain a machine-readable representation of all descriptor files available.

An illustration of data flow within the CollecTor application can be found in figure 5. The
individual modules are described in their relevant sub-section below.

3.1 CollecTor common parts

CollecTor modules are all managed as part of a single Java application. This application uses
java.util.concurrent to manage concurrency of the modules and schedule executions. A
Java properties file is used to manage the configuration options for CollecTor instances.

9



connbidirect

Language files code

Java 1 412

onionperf

Language files code

Java 1 309
SQL 1 149

legacy/servers

Language files code

Java 5 1288
SQL 1 609

advbwdist

Language files code

Java 1 122
R 1 19

hidserv

Language files code

Java 11 1398

clients

Language files code

Java 1 427
Python 2 400
SQL 1 363
R 3 44

ipv6servers

Language files code

Java 8 415
SQL 1 89

webstats

Language files code

Java 1 260
SQL 1 156
R 1 13

Table 3: Approximate lines of code count per programming language in the metrics-web source
control repository per module.

10



Language files code

Java 44 1597
Bourne Shell 3 151
XML 1 130
HTML 1 13

Table 4: Approximate lines of code count per programming language in the CollecTor source
control repository for common parts.

0

25

50

75

100

relaydescs bridgedescs onionperf webstats exitlists

Total Archive Size (Gigabytes)

Figure 6: Total size of archived documents for each CollecTor module.

As part of the operation of CollecTor, the scheduler also checks the available space for the
storage and logs a warning, if 200 MiB or less are available, and otherwise logs available space
in TRACE level. These logs are scraped to raise alerts in the event that disk space is running
low, by an external system.

Approximate lines of code count per programming language in the CollecTor source control
repository for common parts can be found in table 4.

3.2 relaydescs module

Relays and directory authorities publish relay descriptors, so that clients can select relays for
their paths through the Tor network. All these relay descriptors are specified in the Tor directory
protocol specification [4]. This module is described in more extensive detail in a recent technical
report [3].

The code specific to this module is found in the org.torproject.metrics.collector.relaydescs
package.

11



New information is available for the relaydescs module to archive with each new consensus
period, which is usually once per hour. If there is downtime, a consensus and the votes that
contributed to it can be missed. Some descriptors are cached if they have appeared in any of
the currently "valid" consensuses as clients do not necessarily need to update every hour but
this does not apply to consensuses or votes.

3.3 bridgedescs module

Bridges and the bridge authority publish bridge descriptors that are used by censored clients
to connect to the Tor network. We cannot, however, make bridge descriptors available as we
do with relay descriptors, because that would defeat the purpose of making bridges hard to
enumerate for censors. We therefore sanitize bridge descriptors by removing all potentially
identifying information and publish sanitized versions here.

The requirement to handle this sensitive information is undesirable and in the future we may
move the sanitizing process into the BridgeDB software that currently makes the descriptors
available to us. If possible, an implementation of the Tor directory protocol may also be added
to BridgeDB to allow us to reuse existing code from the relaydescs module.

3.4 onionperf module

The performance measurement services Torperf (now defunct) and OnionPerf publish perfor-
mance data from making simple HTTP requests over the Tor network. Torperf/OnionPerf use
a SOCKS client to download files of various sizes over the Tor network and notes how long
substeps take.

The measurement results are published once a day via HTTPS for CollecTor to retrieve.
Additionally, a JSON file containing more information is available along with the raw logs
generated by the tor processes but these are not archived. A future version of this module may
collect the JSON files in addition to the Torperf file.

3.5 webstats module

Tor’s web servers, like most web servers, keep request logs for maintenance and informational
purposes. However, unlike most other web servers, Tor’s web servers use a privacy-aware
log format that avoids logging too sensitive data about their users. Also unlike most other
web server logs, Tor’s logs are neither archived nor analyzed before performing a number of
post-processing steps to further reduce any remaining privacy-sensitive parts.

Tor’s Apache web servers are configured to write log files that extend Apache’s Combined
Log Format with a couple tweaks towards privacy. The main difference to Apache’s Common
Log Format is that request IP addresses are removed and the field is instead used to encode
whether the request came in via http:// (0.0.0.0), via https:// (0.0.0.1), or via the site’s onion
service (0.0.0.2).

Tor’s web servers are configured to use UTC as timezone, which is also highly recommended
when rewriting request times to "00:00:00" in order for the subsequent sanitizing steps to work
correctly. Alternatively, if the system timezone is not set to UTC, web servers should keep
request times unchanged and let them be handled by the subsequent sanitizing steps.

12



Tor’s web servers are configured to rotate logs at least once per day, which does not necessarily
happen at 00:00:00 UTC. As a result, log files may contain requests from up to two UTC days
and several log files may contain requests that have been started on the same UTC day.

The full steps taken for sanitizing the log files are documented on the Tor Metrics website3.
Sanitized log files are typically compressed before publication. The sorting step also allows

for highly efficient compression rates. We typically use XZ for compression, which is indicated
by appending “.xz” to log file names, but this is subject to change.

3.6 exitlists module

The exit list service TorDNSEL publishes exit lists containing the IP addresses of relays that
it found when exiting through them. The measurement results are made available via a web
server a fetched regularly.

4 Onionoo

Onionoo is a web-based protocol to learn about currently running Tor relays and bridges.
Onionoo itself was not designed as a service for human beings—at least not directly. Onionoo
provides the data for other applications and websites which in turn present Tor network status
information to humans. Relay Search, described in section 6, is one such application.

The Onionoo service is designed as a RESTful web service. Onionoo clients send HTTP GET
requests to the Onionoo server which responds with JSON-formatted replies. The format of
requests is described in the Onionoo protocol [5] which is a versioned protocol with change
procedures described as part of its specification.

The Onionoo codebase is split into two parts: the hourly updater described in §4.1 and the
web server described in §4.2. The reason for this split is to improve the operational security of
the service. The web server has greatly reduced permissions compared to the hourly updater to
reduce the impact of it being compromised.

Data flow through the Onionoo application is illustrated in figure 7. The hourly updater
merges new information found in recent relay and bridge descriptors retrieved from the CollecTor
service with its internal state files. These state files are accessible to the web server which
uses these to respond to queries from user applications. As of early 2019, these state files are
approximate 33 gigabytes in size.

In the future these flat files may be replaced with a relational database to improve perfor-
mance and storage efficiency.

4.1 Onionoo common parts and hourly updater

The number of lines of code for each programming language contained in the source control
repository for the common parts and hourly updater can be found in table 6.

3https://metrics.torproject.org/web-server-logs.html

13

https://metrics.torproject.org/web-server-logs.html


relaydescs

Language files code

Java 6 2574

bridgedescs

Language files code

Java 4 1492

exitlists

Language files code

Java 1 181

onionperf

Language files code

Java 1 253

webstats

Language files code

Java 3 385

Table 5: Approximate lines of code per programming language in the CollecTor source control
repository for the each module.

14



CollecTor 
“Recent” 

Documents

Onionoo 
Hourly 

Updater

Onionoo
Web Server

Onionoo 
State FilesOnionoo 

State FilesOnionoo 
State Files

triggers

reads and updates

reads

fetches from

Hourly 
Updater 

Logs

Web 
Server 
Logs

writes

writes

Actor

queries

Response
Document

writes

for

Figure 7: Data flow in the Onionoo application.

15



The hourly updater’s main class is org.torproject.metrics.onionoo.cron.Main and uses
the java.util.concurrent API to schedule the execution of the updater. When the updater
runs it performs a total of 7 steps.

1. Initialize data structures and helper classes

2. Download latest descriptors from CollecTor using the “recent” documents

3. Update statuses to include new information from descriptors

4. Write documents to disk (to make available to web server)

5. Write parse histories4 and flush document cache

6. Gather statistics about the update process

7. Clean up

Descriptor downloads and parsing from CollecTor are implemented using metrics-lib. In
order to avoid missing the processing of a descriptor it is necessary to run the updater while
that descriptor is available from the recent documents in CollecTor. Onionoo will not fetch from
the CollecTor archives to process missed data.

The classes relating to Onionoo documents, e.g. summary or details documents, are shared
between the hourly updater and the web server. These classes can be found in the package
org.torproject.metrics.onionoo.docs. This package does not have any dependencies on
other parts of the Onionoo codebase (but does depend on metrics-lib), and as part of releases
we build a thin JAR file containing none of the Onionoo dependencies to allow this package to
also be easily reused by client applications.

For the document classes we use the Jackson5 library for JSON handling. This library reduces
our code maintenance costs by making it easy to implement additions or modifications to the
protocol. This library is also fast, which is the reason we switched to using this library from
Gson6. Jackson is currently actively maintained by its developers.

4.2 Onionoo web server

The number of lines of code for each programming language contained in the source control
repository for the web server can be found in table 7.

The web server specific classes are organised in the org.torproject.metrics.onionoo.server
package and the main class is org.torproject.metrics.onionoo.server.ServerMain. The
main class spawns a Jetty7 web server and servlet engine.

When a request comes in to the web server application, responses are composed from the
state files that have been written by the hourly updater described in the previous sub-section.

When a request is received, the following 5 steps are followed:

4Parse histories record which descriptors have already been processed to avoid their statistics being counted
twice.

5https://github.com/FasterXML/jackson
6https://github.com/google/gson
7https://www.eclipse.org/jetty/

16

https://github.com/FasterXML/jackson
https://github.com/google/gson
https://www.eclipse.org/jetty/


Language files code

Java 51 7359
XML 4 164
HTML 2 18
Bourne Shell 1 2

Table 6: Approximate lines of code count per programming language in the Onionoo source
control repository for common parts and the hourly updater.

Language files code

Java 15 2517

Table 7: Approximate lines of code count per programming language in the Onionoo source
control repository for the web server.

1. Known relays and bridges are filtered by search query

2. Ordering is applied

3. Offset is applied

4. Limit is applied

5. Final response is built including summary information

The combination of the offset and limit in these steps provides pagination to clients that can
benefit from that. The final response is a JSON document that can be consumed by the client,
either using Onionoo’s document classes or an independent compliant implementation.

5 ExoneraTor

ExoneraTor is a small service. It has two parts: one part that fetches recent descriptors from
CollecTor and imports them into a database, and another part that listens for incoming web
requests and answers them by querying the database.

5.1 ExoneraTor common parts and database importer

The approximate lines of code count per programming language in the ExoneraTor source
control repository for common parts and the database importer can be found in table 8.

The schema for the database can be found in src/main/sql/exonerator.sql and exonerator2.sql
in the ExoneraTor source control repository. Both scripts must be used in order to set up an

17



Language files code

Java 1 351
SQL 2 501
XML 4 252
Bourne Shell 1 2

Table 8: Approximate lines of code count per programming language in the ExoneraTor source
control repository for common parts and the database importer.

Language files code

Java 6 1083
JSP 3 39
CSS 2 33

Table 9: Approximate lines of code count per programming language in the ExoneraTor source
control repository for common parts and the database importer.

ExoneraTor database. This database stores consensus entries and exit list entries. It is highly
optimized towards the use case of looking up relays by IP address and date.

The database importer is contained in ExoneraTorDatabaseImporter. That code is sup-
posed to run once per hour. It checks its configuration file, connects to the database, fetches
descriptors from CollecTor, parses descriptors, imports them into the database, and closes the
connection.

The database importer uses a simple lock file to avoid overlapping executions, and it doesn’t
start a new import until the lock file is at least six hours old. When that happens, the importer
assumes that the lock file was left over from an aborted run, deletes it, and continues as usual.

ExoneraTor can handle not importing anything for 72 hours. After that time it will miss any
descriptors that dropped out of CollecTor’s recent folder.

ExoneraTor’s working filesystem usage is currently 159MB and the database is currently
63GB in size.

5.2 ExoneraTor web server

The approximate lines of code count per programming language in the ExoneraTor source
control repository for the web server can be found in table 9.

We’re using an embedded Jetty that is started using ServerMain and that deploys a small
number of servlets:

18



QueryServlet This servlet accepts an IP address and date and knows how to ask the database
whether that IP address was a relay on the given date. It first parses its parameters, makes the
database request, and puts together a QueryResponse object with the response. That response
object is serialized to a JSON object.

Note that we’re only making a single database request and returning a single response object,
regardless of the output. For example, the response might be positive with details about the
match, but it might also be negative with nearby addresses that we would have had a match
for. We could have made several database requests, depending on what we find, but it seemed
better to let the database do the heavy lifting and minimize interaction between web server
and database, which is what we did.

ExoneraTorServlet This is the servlet that produces an actual web page for a given request.
Internally it relies on QueryServlet to provide database results. But ExoneraTorServlet knows
how to present a query response. This includes all kinds of error cases like having no database
connection, not having relevant data, and so on.

However, ExoneraTorServlet is not deployed on https://exonerator.torproject.org/,
because we moved all user-facing parts to the Tor Metrics website. Instead, Tor Metrics deploys
ExoneraTorServlet and wraps it in its Tor Metrics specific website header and footer. See also
ExoneraTorWrapperServlet in metrics-web for more details. In theory, it would be possible to
change ExoneraTor’s web.xml to deploy this servlet directly on the ExoneraTor host that also
has the database.

ExoneraTorRedirectServlet This is deployed on the ExoneraTor host and which redirects all
requests to the Tor Metrics website.

It’s perhaps worth noting that ExoneraTor is the only page on Tor Metrics that comes
with translations. They are contained in the ExoneraTor repository (for deployment on the
ExoneraTor host which we’re not doing) and in the metrics-web repository (which is what we
have deployed on Tor Metrics).

6 Relay Search

Relay Search is maintained as part of the metrics-web codebase, and is tightly integrated into
the metrics-web theming via a JSP. Approximate lines of code count per programming language
in the metrics-web source control repository for Relay Search can be found in table 10.

Relay Search is a browser-based Onionoo client that allows users to search for Tor relays
and bridges by using Onionoo search queries. Users can get a detailed view of how the relay is
configured, what its exit policy is and all the data that you would normally find in the server
descriptor. The historical data of a relay’s bandwidth usage is available in graph form, also
provided by Onionoo.

This application is built in a way that all the logic is delegated to the client. This means
that the amount of requests made to the server can be minimized and that this application can
potentially run by being loaded locally. The server is only interrogated for JSON objects that do
not manipulate the DOM of the page.

19

https://exonerator.torproject.org/


Language files code

JavaScript 33 3846
HTML 8 1086
CSS 5 357
Python 1 17
JSON 1 1

Table 10: Approximate lines of code count per programming language in the metrics-web source
control repository for Relay Search.

Language files code

Java 79 9385
HTML 1 62
Bourne Shell 1 2

Table 11: Approximate lines of code count per programming language in the metrics-lib source
control repository.

Relay Search uses Backbone.js8 as an MV* framework, with require.js9 for AMD loading
of dependencies. jQuery10 and Underscore.js11 as JavaScript utility libraries. Datatables12 is
used for visualizing data in tabular form with custom filtering and D3.js13 is used for data
visualisation.

7 metrics-lib

Tor Metrics Library API, which is provided and supported by Tor’s Metrics Team, is a library
to obtain and process descriptors containing Tor network data. It is the main Java tool for
processing Tor descriptors and provides a standard API consisting of interfaces and a reference
implementation for all of them.

Most Tor descriptors understood by this library are specified in the Tor directory protocol,
version 3 or in the earlier version 2 or version 1 of that document. Other descriptors are specified
on the CollecTor website.

The design and development of this library has been driven by two main goals originating

8https://backbonejs.org/
9https://requirejs.org/

10https://jquery.com/
11https://underscorejs.org/
12https://datatables.net/
13https://d3js.org

20

https://backbonejs.org/
https://requirejs.org/
https://jquery.com/
https://underscorejs.org/
https://datatables.net/
https://d3js.org


from the primary use case to make Tor network data accessible for statistical analysis:

• Complete coverage: This library is supposed to cover the complete range of Tor descriptors
made available by the CollecTor service.

• Runtime and memory efficiency: Processing large amounts of descriptors in bulk is
supposed to be efficient in terms of runtime and required memory.

At the same time the current design and implementation were done with a number of
non-goals in mind, even though some of these might turn into goals in the future:

• Verification: The descriptor parser performs some basic verifications of descriptor formats,
but no cryptographic verifications. It may not even be possible to write a cryptographic
verification tool using parsed descriptor contents, though this has not been attempted yet.

• Potentially lossy conversion: Descriptor contents may be converted to a format that is
easier to process, even if that conversion makes it harder or impossible to re-create the
original descriptor contents from a parsed descriptor.

• Generating descriptors: This library does not contain any functionality to generate new
descriptors for testing or related purposes, neither from previously set data nor randomly.

• Writing descriptors: This library does not support writing descriptors to the file system
or a database, both of which are left to the application. Stated differently, there are no
descriptor sinks that would correspond to the provided descriptor sources.

The org.torproject.descriptor package contains all relevant interfaces and classes that
an application would need to use this library. Applications are strongly discouraged from ac-
cessing types from the implementation package (org.torproject.descriptor.impl) directly,
because those may change without prior notice.

Interfaces and classes in this package can be grouped into general-purpose types to obtain
and process any type of descriptor and descriptors produced by different components of the Tor
network:

General-purpose types These comprise DescriptorSourceFactory which is the main entry
point into using this library. This factory is used to create the descriptor sources for obtaining
remote descriptor data (DescriptorCollector) and descriptor sources for processing local de-
scriptor data (DescriptorReader and DescriptorParser). General-purpose types also include
the superinterface for all provided descriptors (Descriptor).

Relays and Bridges The first group of descriptors is published by relays and servers in the Tor
network. These interfaces include server descriptors (ServerDescriptor with subinterfaces
RelayServerDescriptor and BridgeServerDescriptor), extra-info descriptors (ExtraInfoDescriptor
with subinterfaces RelayExtraInfoDescriptor and BridgeExtraInfoDescriptor), microde-
scriptors which are derived from server descriptors by the directory authorities (Microdescriptor),
and helper types for parts of the aforementioned descriptors (BandwidthHistory).

21



Network Statuses The second group of descriptors is generated by authoritative directory
servers that form an opinion about relays and bridges in the Tor network. These include
descriptors specified in version 3 of the directory protocol (RelayNetworkStatusConsensus,
RelayNetworkStatusVote, DirectoryKeyCertificate, and helper types for descriptor parts
DirSourceEntry, NetworkStatusEntry, and DirectorySignature), descriptors from earlier di-
rectory protocol version 2 (RelayNetworkStatus) and version 1 (RelayDirectory and RouterStatusEntry),
as well as descriptors published by the bridge authority and sanitized by the CollecTor service
(BridgeNetworkStatus).

Auxiliary The third group of descriptors is created by auxiliary services connected to the Tor
network rather than by the Tor software. This group comprises descriptors by the bridge distri-
bution service BridgeDB (BridgePoolAssignment), the exit list service TorDNSEL (ExitList),
the performance measurement service Torperf (TorperfResult), and sanitized access logs of
Tor’s web servers (WebServerAccessLog).

8 OnionPerf

OnionPerf is a special codebase within the Tor Metrics ecosystem for two reasons. It performs
active measurements of the Tor network, whereas other parts are either passive or analysing
the existing data, and it is written in Python as opposed to Java. It is a tool which tracks data
download performance though the publicly deployed Tor network.

It uses a traffic generator server TGen to serve and fetch random data on the running host.
The data is transferred through Tor using Tor client processes and ephemeral Onion Services.

OnionPerf uses a “measure” component which controls the flow of all measurements done
by the tool. The code for this is included in file measurement.py.

There are two measurement options:

• Files hosted on the local machine are downloaded via the Tor network using a Tor client
only. This emulates accessing the Internet via Tor.

• Files hosted as an Onion Service using a Tor server are downloaded via the Tor network
using a Tor client. This emulates accessing an Onion service via Tor.

OnionPerf has a traffic generation component and a Tor client component which underpin
measurements and are included in the measurement.py file. The traffic generator OnionPerf
uses is Tgen, a C application that models traffic behaviors using an action-dependency graph
represented using the standard GraphML (XML) format. By default, OnionPerf’s TGen client
performs 50KB, 1MB and 5MB transfers in a probabilistic fashion using a weighted action graph.
The TGen server listens for incoming transfers and serves data on a TCP port of the running host.
The graph models that can be used for both TGen server and client are defined in a separate
file, model.py.

OnionPerf uses the tor binary available on the running host for its Tor client component,
which it calls as a managed subprocess. OnionPerf can also specify configuration strings for the

22



client or Onion Service. It also uses the Python stem14 library for creating ephemeral Onion
Services.

Tor control information and TGen performance statistics are logged and analyzed once per
day to produce statistics in json and TorPerf formats. The code for extracting data from the logs
on the disk is found in file analysis.py. The TorPerf files are archived by CollecTor’s onionperf
module.

9 Comparison to OONI’s data pipeline

OONI is a free software, global observation network for detecting censorship, surveillance
and traffic manipulation on the Internet. Using an active measurement tool, ooniprobe15,
measurements that can detect censorship or other network interference are collected. These
are then fed in to OONI’s data processing pipeline16 for archive, analysis and visualisation.

All results from ooniprobe are submitted to one of a few instances of OONI Collector17. The
OONI Collector is a web service that can receive measurements via HTTPS Internet and Onion
addresses.

This is the first deviation from the Tor Metrics model. Tor Metrics’ CollecTor uses a pull-
model to fetch data from a number of services periodically, whereas the OONI Collector uses a
push-model where measurement probes actively submit results to be processed at any time.

The OONI Collector is not fault-tolerant as the upload protocol currently binds the client to
specific collector instance. Tor Metrics’ CollecTor is fault-tolerant as if one CollecTor instance
is down, the other instance will still archive data which can be sideloaded into the primary
CollecTor instance once it recovers.

Apache Airflow18 is used by the OONI pipeline for scheduling of batch processing tasks, and
providing a UI and logging interface for those tasks. Daily, the airflow rsync’s report files from
“outgoing” spools of the collectors, merges those reports into a “reports-raw” bucket (a directory
on the filesystem) and creates a flag file listing all the files.

From the raw reports, compressed archives are created for the day’s worth of submitted
results. These archives are for cold archive and known as “reports-tgz”. There are also smaller
archives created, known as “canned” archives, which are sorted by measurement type and lz4
compressed. Both the “canned” and “reports-tgz” files are uploaded to a private Amazon S3.

Tor Metrics’ CollecTor does not initially create archives when data is collected but instead
stores the raw documents directly in the filesystem. The last 72 hours of documents collected
are concatenated at the time of the update and served from the “recent” directory to clients.
Only after the 72 hour peiod is up are the documents archived in the tarballs for cold storage.
Tor Metrics currently does not use any cloud storage or cloud data processing, but the CollecTor
server does have backups managed by the Tor Sysadmin Team.

14https://stem.torproject.org/
15https://github.com/ooni/probe
16https://github.com/ooni/pipeline/blob/master/docs/pipeline-16.10.md
17https://github.com/ooni/collector — Note that this software is not related to the Tor Metrics “CollecTor”

application
18https://airflow.apache.org/

23

https://stem.torproject.org/
https://github.com/ooni/probe
https://github.com/ooni/pipeline/blob/master/docs/pipeline-16.10.md
https://github.com/ooni/collector
https://airflow.apache.org/


The data is sanitised (removing bridge IPs, for example) and compressed into data-aware
*.tar.lz4 files where LZ4 framing is aligned with the framing of JSON measurements, those files
are known as “autoclaved”. “autoclaved” files are seekable (to get individual measurement)
and streamable with ordinary CLI tools (e.g, tar -to-stdout) for those who want to get the
raw data. “autoclaved” files are uploaded to a public Amazon S3 bucket.

Tor Metrics’ CollecTor performs sanitisation before processing any data further to avoid
sensitive data existing for any longer than it needs to.

Some metadata and features of those autoclaved files are stored in a PostgreSQL database
to ease data mining and to handle API queries and presentation. Metadata that is used by
API currently takes 32 GiB and corresponding indexes take 65 GiB. The OONI API19 provides
RESTful access to this data.

For visualisation on the Tor Metrics website, each visualisation is using its own Postgres
database to maintain its working data, and access to these databases are only by their relevant
modules. CSV files are produced from those databases that can, to a limited extent, be cus-
tomised by users. Onionoo provides a more featureful query interface although is backed by
flat-files and not by a database which may present scaling issues in the future.

OONI Explorer talks to the OONI API to present a global map which provides a location to
explore and interact with all of the network measurements that have been collected through
OONI tests from 2012 until today. This is a browser-based API client, very similar to Relay
Search in its architecture although using some different components where trends in JavaScript
development have changed.

The OONI pipeline setup allowed the team to grow 15 times from approximately 1.2 TiB of
raw data to approximately 18 TiB. It is estimated that they could grow a futher 2 times from
there without hitting major obstacles, which is approximately 2 years at their current growth
rate.

10 Next Steps

From this report, we can draw some next steps for the Metrics Team to work on:

• The various metrics-web modules are basically applications on their own. We can likely
save many LOCs by using common code for tasks like reading descriptors, importing into
the database, and writing output files. We are tracking this task as ticket #2834220: Share
more code between modules.

• We should make more use of databases. We should look into using a single database for
metrics-web, possibly using schemas for tables belonging to a specific module. We should
also look into using a database in Onionoo for storing prepared response parts. The goal
is not just to improve service performance but also to increase robustness.

• We should try to make better use of existing libraries and frameworks. The CollecTor
prototype was a good step in this direction, and we should continue investigating what
we can do there.

19http://api.ooni.io/
20https://bugs.torproject.org/28342

24

http://api.ooni.io/
https://bugs.torproject.org/28342


• A combination of Tor Metrics data with OONI data could be very informative when it
comes to Tor’s censorship circumvention work. We should investigate how this could be
possible.

• As our dataset sizes continue to grow, we will have to begin investigating new solutions
for handling the data. We may also have to explore new ways of making the data publicly
available, as OONI have done through their use of AWS.

References

[1] George Danezis. An anomaly-based censorship-detection system for Tor. Technical Report
2011-09-001, The Tor Project, September 2011.

[2] George Kadianakis and Karsten Loesing. Extrapolating network totals from hidden-service
statistics. Technical Report 2015-01-001, The Tor Project, January 2015.

[3] Iain R. Learmonth and Karsten Loesing. Towards modernising data collection and archive
for the Tor network. Technical Report 2018-12-001, The Tor Project, December 2018.

[4] Tor Project. Tor directory protocol, version 3. https://spec.torproject.org/dir-spec.

[5] Tor Project. Onionoo Protocol Specification. https://metrics.torproject.org/onionoo.
html.

25

https://spec.torproject.org/dir-spec
https://metrics.torproject.org/onionoo.html
https://metrics.torproject.org/onionoo.html

	Overview of the software behind Tor Metrics
	Tor Metrics Website
	metrics-web connbidirect module
	metrics-web onionperf module
	metrics-web legacy/servers module
	metrics-web advbwdist module
	metrics-web hidserv module
	metrics-web clients module
	metrics-web ipv6servers module
	metrics-web webstats module

	CollecTor
	CollecTor common parts
	relaydescs module
	bridgedescs module
	onionperf module
	webstats module
	exitlists module

	Onionoo
	Onionoo common parts and hourly updater
	Onionoo web server

	ExoneraTor
	ExoneraTor common parts and database importer
	ExoneraTor web server

	Relay Search
	metrics-lib
	OnionPerf
	Comparison to OONI's data pipeline
	Next Steps

